OMA A A A

A．1．β
A．2．α
A．3．δ
A．4．γ
A．5．a
A．6．a）Σ ，
ß）\wedge ，
y）Σ ，
б）\wedge ，
ع）Σ.

A．7． $1^{\text {os }}$ тро́тоऽ

x	y	$\overline{\mathrm{x}}$	$\overline{\mathrm{y}}$	$\mathrm{x}+\overline{\mathrm{y}}$	$\mathrm{y}+\overline{\mathrm{x}}$	$\mathrm{x}(\mathrm{y}+\overline{\mathrm{x}})$	$\mathrm{y}(\mathrm{x}+\overline{\mathrm{y}})$	$\mathrm{x}(\mathrm{y}+\overline{\mathrm{x}})+\mathrm{y}(\mathrm{x}+\overline{\mathrm{y}})$	$\overline{\mathrm{x}(\mathrm{y}+\overline{\mathrm{x}})+\mathrm{y}(\mathrm{x}+\overline{\mathrm{y}})}$	$\overline{\mathrm{x}}+\overline{\mathrm{y}}$
0	0	1	1	1	1	0	0	0	1	1
0	1	1	0	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	0	1	1
1	1	0	0	1	1	1	1	1	0	0

$2^{\circ \varsigma}$ тро́тоऽ

$$
\begin{aligned}
\bar{x} \cdot(y+\bar{x})+y \cdot(x+\bar{y}) & =\overline{x \cdot(y+\bar{x})} \cdot \overline{y \cdot(x+\bar{y})} \\
& =(\bar{x}+\overline{(y+\bar{x})}) \cdot(\bar{y}+\overline{(x+\bar{y})}) \\
& =(\bar{x}+\bar{y} \cdot x) \cdot(\bar{y}+\bar{x} \cdot y) \\
& =(\bar{x}+\bar{y})(\bar{x}+x) \cdot(\bar{y}+\bar{x})(\bar{y}+y) \\
& =(\bar{x}+\bar{y}) \cdot(\bar{y}+\bar{x})=\bar{x}+\bar{y}
\end{aligned}
$$

OMA A A
B．1．
$R_{0 \lambda}=\frac{R}{3}$
$\left.\begin{array}{l}V_{1}=I \cdot R_{o \lambda} \\ V_{1}=I_{1} \cdot R\end{array}\right\}$ ápa $I \cdot R_{o \lambda}=I_{1} \cdot R \Leftrightarrow$
$I \cdot \frac{R}{3}=I_{1} \cdot R \quad \Leftrightarrow \quad I_{1}=\frac{I}{3}$

$$
\begin{aligned}
& R_{0 \lambda}=\frac{2 R \cdot R}{2 R+R}=\frac{2 R}{3} \\
& \left.V_{2}=I \cdot R_{0 \lambda}\right\} \text { ápa } I \cdot R_{0 \lambda}=I_{2} \cdot R \Leftrightarrow \\
& \left.V_{2}=I_{2} \cdot R\right\} \\
& I \cdot \frac{2 R}{3}=I_{2} \cdot R \Leftrightarrow I_{2}=\frac{21}{3}
\end{aligned}
$$

$R_{\text {o }}=\frac{\frac{1}{2 R} \cdot R}{2 R+R}=\frac{2 R}{3}$
$\left.\begin{array}{l}V_{3}=I \cdot R_{0 \lambda} \\ V_{3}=I_{3} \cdot 2 R\end{array}\right\}$ ápa $\quad I \cdot R_{0 \lambda}=I_{3} \cdot 2 R \Leftrightarrow$
I. $\frac{2 R}{3}=I_{3} \cdot 2 R \Leftrightarrow I_{3}=\frac{1}{3}$

$\left.\begin{array}{l}V_{4}=I \cdot \frac{R}{2} \\ V_{4}=I_{4} \cdot R\end{array}\right\} \dot{a} \rho \alpha$
$I \cdot \frac{R}{2}=I_{4} \cdot R \Leftrightarrow I_{4}=\frac{1}{2}$
Apa $\mathrm{I}_{1}=\mathrm{I}_{3}$.
B.2.
$\omega=100 \mathrm{rad} / \mathrm{sec} \quad \varphi_{0}=0^{\circ}$
a) $X_{L}=\omega L=100 \cdot 0,03=3 \Omega$
ß) $Z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{3^{2}+3^{2}}=3 \sqrt{2} \Omega$
v) $\varphi_{Z}=\operatorname{\tau о} \varepsilon \varepsilon \varphi \frac{X_{L}}{R}=\operatorname{\tau о} \varepsilon \varepsilon \varphi \frac{3}{3}=\operatorname{\tau о} \varepsilon \varepsilon \varphi 1=\frac{\pi}{4}$
б) $\mathrm{i}=\frac{\mathrm{V}_{0}}{\mathrm{z}} \cdot \eta \mu\left(\omega \mathrm{t}+\varphi_{0}-\varphi_{z}\right)=\frac{300}{3 \sqrt{2}} \cdot \eta \mu\left(100 \mathrm{t}-\frac{\pi}{4}\right)$

ع) $P=V_{\varepsilon v} \cdot I_{\varepsilon v} \sigma U V \varphi_{z}=\frac{1}{2} \cdot V_{0} \cdot I_{0} \sigma U V \frac{\pi}{4}=\frac{1}{2} \cdot 300 \cdot 50 \sqrt{2} \frac{\sqrt{2}}{2}=7500 \mathrm{~W}$
$\sigma \tau) S=V_{\varepsilon v} \cdot I_{\varepsilon V}=\frac{1}{2} \cdot V_{0} \cdot I_{0}=\frac{1}{2} \cdot 300 \cdot 50 \sqrt{2}=7500 \sqrt{2} \mathrm{VA}$

